Ученые из Новосибирского государственного университета (НГУ), Новосибирского института органической химии (НИОХ), МГУ и Университета Гронингена (Нидерланды) вырастили из раствора органические монокристаллы, которые обладают полупроводниковыми и люминесцентными свойствами, сообщает пресс-служба НГУ.
В перспективе подобные соединения могут использоваться для производства органических светоизлучающих транзисторов и гибких электронных устройств, говорится в сообщении. Статья, посвященная разработке, опубликована в журнале RSC Advances.
У органических полупроводников по сравнению с традиционным кристаллическим кремнием есть ряд значительных преимуществ, среди которых лёгкость, гибкость, полупрозрачность, возможность изменять свойства и дешевизна производства. Неорганические полупроводники делать довольно сложно, они требуют высоких температур и вакуума, на органику же уходит значительно меньше усилий: например, можно напечатать полупроводниковый слой на принтере, напылить его или использовать различные процессы самосборки.
Подобные материалы очень пригодились бы в разработке органических светоизлучающих элементов и гибких электронных устройств, вроде гибкого дисплея, который можно было бы сложить или свернуть в трубочку и положить в карман. Однако полупроводниковые и светоизлучающие (люминесцентные) свойства вступают в противоречие. Для высокой подвижности зарядов необходима достаточно плотная упаковка молекул в полупроводнике, они должны располагаться близко друг к другу, но из-за этого люминесценция часто оказывается слабой.
Эффективность светоизлучения оценивают по квантовому выходу, под которым понимают отношение среднего числа излучённых квантов к числу поглощённых. Оказалось, что у материала из выращенных фуран-фениленовых кристаллов квантовый выход довольно высок: 65% по сравнению с 35% у уже существующего тиофенового аналога. Авторы работы получали новый органический полупроводник, используя в качестве основы олигомер фенилфуранбензола (BPFB). (Олигомерами называют молекулы с небольшим количеством одинаковых звеньев, в отличие от полимеров, у которых таких звеньев много.) Исследователям удалось синтезировать соединение с более компактными и жесткими фурановыми фрагментами, вырастить кристаллы и исследовать их полупроводниковые и оптические свойства, которые, как мы только что сказали, оказались более чем удовлетворительными.
В дисплеях каждый пиксель представляет собой светодиод, управляемый одним транзистором. Новый материал позволяет объединить в одном устройстве функции как управления, так и излучения света, т.е. создать светоизлучающий транзистор. Кроме того, такие устройства по сравнению с обычными светодиодами более энергоэффективны, и в перспективе их можно использовать для создания органических лазеров с электрической накачкой.
«Мы стремимся упростить процесс изготовления устройств. Неорганические полупроводники производятся с применением сложных технологий, которые требуют высоких температур, вакуума. Органические же материалы можно наносить более дешевыми и простыми способами, например, напечатать полупроводниковый слой на принтере. Уникальные свойства материалов могут способствовать созданию новых устройств, например, гибкого дисплея, который можно сложить или свернуть в трубочку и положить в карман», — приводятся в сообщении слова одного из разработчиков, сотрудника лаборатории химии свободных радикалов НГУ Максима Казанцева.
Источник: http://tass.ru/nauka/3678984, http://tass.ru/nauka/3687322, https://www.nkj.ru/news/29715/